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t hree

Ancient Greek Number Theory

Pythagoreans applied themselves to the study of mathematics....
They thought that its principles must be the principles of all existing things.

Aristotle, Metaphysics

In this chapter, we're going to look at some of the problems studied by ancient
Greek mathematicians. Their work on patterns and “shapes” of numbers led to
the discovery of prime numbers and the beginnings of a field of mathematics
called number theory. They also discovered paradoxes that ultimately produced
some mathematical breakthroughs. Along the way, we'll examine an ancient
algorithm for finding primes, and see how to optimize it.

3.1 Geometric Properties of Integers

Pythagoras, the Greek mathematician and philosopher who most of us know
only for his theorem, was actually the person who came up with the idea that
understanding mathematics is necessary to understand the world. He also dis-
covered many interesting properties of numbers; he considered this understand-
ing to be of great value in its own right, independent of any practical application.
According to Aristotle’s pupil Aristoxenus, “He attached supreme importance to
the study of arithmetic, which he advanced and took out of the region of com-
mercial utility”

17
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Pythagoras (ca. 570 BC-ca. 490 BC)

Pythagoras was born on the Greek is-
land of Samos, which was a major
naval power at the time. He came
from a prominent family, but chose
to pursue wisdom rather than wealth.
At some point in his youth he trav-
eled to Miletus to study with Thales,
the founder of philosophy (see Sec-
tion 9.2), who advised him to go to
Egypt and learn the Egyptians’ math-
ematical secrets.

During the time Pythagoras was
studying abroad, the Persian empire
conquered Egypt. Pythagoras fol-
lowed the Persian army eastward to Babylon (in what is now Iraq), where he
learned Babylonian mathematics and astronomy. While there, he may have
met travelers from India; what we know is that he was exposed to and began
espousing ideas we typically associate with Indian religions, including the
transmigration of souls, vegetarianism, and asceticism. Prior to Pythago-
ras, these ideas were completely unknown to the Greeks.

After returning to Greece, Pythagoras started a settlement in Croton,
a Greek colony in southern Italy, where he gathered followers—both men
and women—who shared his ideas and followed his ascetic lifestyle. Their
lives were centered on the study of four things: astronomy, geometry, num-
ber theory, and music. These four subjects, later known as the quadrivium,
remained a focus of European education for 2000 years. Each of these disci-
plines was related: the motion of the stars could be mapped geometrically,
geometry could be grounded in numbers, and numbers generated music. In
fact, Pythagoras was the first to discover the numerical structure of frequen-
cies in musical octaves. His followers said that he could “hear the music of
the celestial spheres”

After the death of Pythagoras, the Pythagoreans spread to several other
Greek colonies in the area and developed a large body of mathematics. How-
ever, they kept their teachings secret, so many of their results may have been
lost. They also eliminated competition within their ranks by crediting all
discoveries to Pythagoras himself, so we don't actually know which indi-
viduals did what.
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Although the Pythagorean communities were gone after a couple of hun-
dred years, their work remains influential. As late as the 17th century, Leib-
niz (one of the inventors of calculus) described himself as a Pythagorean.

Unfortunately, Pythagoras and his followers kept their work secret, so none
of their writings survive. However, we know from contemporaries what some
of his discoveries were. Some of these come from a first-century book called
Introduction to Arithmetic by Nicomachus of Gerasa. These included obser-
vations about geometric properties of numbers; they associated numbers with
particular shapes.

Triangular numbers, for example, which are formed by stacking rows repre-
senting the first n integers, are those that formed the following geometric pattern:

a

a aa

a aa aaa

a aa aaa aaaa

a aa aaa aaaa aqaaaa

a aa aaa aaaa aaaaa aaaaaa
1 3 6 10 15 21

Oblong numbers are those that look like this:

a

a aa

a aa aaa

a aa aaa aqaaa

a aa aaa aqaaa aaaaa

a aax aaa aaaa aaaaa aaaaaa
2 6 12 20 30 42

It is easy to see that the nth oblong number is represented by an n x (n + 1)
rectangle:
On=n(n+1)

It’s also clear geometrically that each oblong number is twice its corresponding
triangular number. Since we already know that triangular numbers are the sum
of the first n integers, we have

DnzzAnzzzi:n(n—i—l)

i=1
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So the geometric representation gives us the formula for the sum of the first n
integers:

n
i=1

Another geometric observation is that the sequence of odd numbers forms
the shape of what the Greeks called gnomons (the Greek word for a carpenter’s
square; a gnomon is also the part of a sundial that casts the shadow):

Combining the first # gnomons creates a familiar shape—a square:

aaaag (X(l(l(lg

aaa aaa aaaoa aaaoa

a a aoca aoca

a a aoca aca aooaoa aoaoa
1 4 9 16 25 36

This picture also gives us a formula for the sum of the first # odd numbers:

n

On=>» (2i—1)=n’

i=1

Exercise 3.1. Find a geometric proof for the following: take any triangular num-
ber, multiply it by 8, and add 1. The result is a square number. (This problem
comes from Plutarch’s Platonic Questions.)

3.2 Sifting Primes

Pythagoreans also observed that some numbers could not be made into any non-
trivial rectangular shape (a shape where both sides of the rectangle are greater
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than 1). These are what we now call prime numbers—numbers that are not prod-
ucts of smaller numbers:

2,3,5,7,11,13,...

(“Numbers” for the Greeks were always whole numbers.) Some of the earliest
observations about primes come from Euclid. While he is usually associated
with geometry, several books of Euclid’s Elements actually discuss what we now
call number theory. One of his results is this theorem:

Theorem 3.1 (Euclid VII, 32): Any number is either prime or divisible by some
prime.

The proof, which uses a technique called “impossibility of infinite descent,” goes
like this:!

Proof. Consider a number A. If it is prime, then we are done. If it is compos-
ite (i.e., nonprime), then it must be divisible by some smaller number B. If B
is prime, we are done (because if A is divisible by B and B is prime, then A is
divisible by a prime). If B is composite, then it must be divisible by some smaller
number C, and so on. Eventually, we will find a prime or, as Euclid remarks in his
proof of the previous proposition, “an infinite sequence of numbers will divide
the number, each of which is less than the other; and this is impossible.” O

This Euclidean principle that any descending sequence of natural numbers ter-
minates is equivalent to the induction axiom of natural numbers, which we will
encounter in Chapter 9.

Another result, which some consider the most beautiful theorem in mathemat-
ics, is the fact that there are infinitely many primes:

Theorem 3.2 (Euclid IX, 20): For any sequence of primes {p1,...,pn}, thereisa
prime p not in the sequence.

Proof. Consider the number

n
qg=1 +Hp,-
i=1

1Euclids proof of VII, 32 actually relies on his proposition VII, 31 (any composite number is
divisible by some prime), which contains the reasoning shown here.
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where p; is the ith prime in the sequence. Because of the way we constructed g,
we know it is not divisible by any p;. Then either g is prime, in which case it is
itself a prime not in the sequence, or g is divisible by some new prime, which
by definition is not in the sequence. Therefore, there are infinitely many primes.

O

One of the best-known techniques for finding primes is the Sieve of Eratos-
thenes. Eratosthenes was a 3rd-century Greek mathematician who is remem-
bered in part for his amazingly accurate measurement of the circumference of
the Earth. Metaphorically, the idea of Eratosthenes’ sieve is to “sift” all the num-
bers so that the nonprimes “fall through” the sieve and the primes remain at
the end. The actual procedure is to start with a list of all the candidate numbers
and then cross out the ones known not to be primes (since they are multiples of
primes found so far); whatever is left are the primes. Today the Sieve of Eratos-
thenes is often shown starting with all positive integers up to a given number,
but Eratosthenes already knew that even numbers were not prime, so he didn’t
bother to include them.

Following Eratosthenes’ convention, we'll also include only odd numbers, so
our sieve will find primes greater than 2. Each value in the sieve is a candidate
prime up to whatever value we care about. If we want to find primes up to a
maximum of m = 53, our sieve initially looks like this:

3 5 7 9 11 13 15 17 19 21 23 25 27
29 31 33 35 37 39 41 43 45 47 49 51 53

In each iteration, we take the first number (which must be a prime) and cross
out all the multiples except itself that have not previously been crossed out. We'll
highlight the numbers being crossed out in the current iteration by boxing them.
Here’s what the sieve looks like after we cross out the multiples of 3:

3) s 7 [f 1 13 [sl17 19 1] 23 25 2]
29 31 [33] 35 37 [39] 41 43 [48] 47 49 [51] 53

Next we cross out the multiples of 5 that have not yet been crossed out:

3(5)7 9 11131517 19 21 23 [25] 27
29 31 33 [35] 37 39 41 43 [45] 47 49 51 53

And then the remaining multiples of 7:

3 5 (7) ¢ 11131517 1920 23 25 27
29 31 33 35 37 39 41 43 45 47 [49] 51 53

We need to repeat this process until we've crossed out all the multiples of factors
less than or equal to |/m |, where m is the highest candidate we're considering.
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In our example, m = 53, so we are done. All the numbers that have not been
crossed out are primes:

3 5 7 9 1113 15 17 19 24 23 25 27
29 31 3% 35 37 39 41 43 45 47 49 51 53

Before we write our implementation of the algorithm, we’ll make a few obser-
vations. Let’s go back to what the sieve looked like in the middle of the process
(say, when we were crossing out multiples of 5) and add some information—
namely, the index, or position in the list, of each candidate being considered:

inde: 0 1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...
values: 3 (5) 7 ¢ 11 13 15 17 19 21 23 [25] 27 29 31 33 [35] 37 39 ...

Notice that when were considering multiples of factor 5, the step size—the num-
ber of entries between two numbers being crossed out, such as 25 and 35—is 5,
the same as the factor. Another way to say this is that the difference between the
indexes of any two candidates being crossed out in a given iteration is the same
as the factor being used. Also, since the list of candidates contains only odd
numbers, the difference between two values is twice as much as the difference
between two indexes. So the difference between two numbers being crossed out
in a given iteration (e.g., between 25 and 35) is twice the step size or, equiva-
lently, twice the factor being used. You'll see that this pattern holds for all the
factors we considered in our example as well.

Finally, we observe that the first number crossed out in each iteration is the
square of the prime factor being used. That is, when we’re crossing out multiples
of 5, the first one that wasn’t previously crossed out is 25. This is because all the
other multiples were already accounted for by previous primes.

3.3 Implementing and Optimizing
the Code

At first glance it seems like our algorithm will need to maintain two arrays: one
containing the candidate numbers we're sifting—the “values”—and another con-
taining Boolean flags indicating whether the corresponding number is still there
or has been crossed out. However, after a bit of thought it becomes clear that we
don’t actually need to store the values at all. Most of the values (namely, all the
nonprimes) are never used. When we do need a value, we can compute it from
its position; we know that the first value is 3 and that each successive value is 2
more than the previous one, so the ith value is 2i + 3.

So our implementation will store just the Boolean flags in the sieve, using
true for prime and false for composite. We call the process of “crossing out”
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nonprimes marking the sieve. Here’s a function we'll use to mark all the non-
primes for a given factor:

template <RandomAccessIterator I, Integer N>
void mark_sieve(I first, I last, N factor) {
// assert(first != Tlast)
*first = false;
while (last - first > factor) {
first = first + factor;
*first = false;

}

We are using the convention of “declaring” our template arguments with a de-
scription of their requirements. We will discuss these requirements, known as
concepts, in detail later on in Chapter 10; for now, readers can consult Appendix C
as a reference. (If you are not familiar with C++ templates, these are also ex-
plained in this appendix.)

Aswell see shortly, we'll call this function with 1 rst pointing to the Boolean
value corresponding to the first “uncrossed-out” multiple of factor, which as
we saw is always factor’s square. For last, we'll follow the STL convention of
passing an iterator that points just past the last element in our table, so that last
- first is the number of elements.

Before we see how to sift, we observe the following sifting lemmas:

e The square of the smallest prime factor of a composite number c is less than
or equal to c.

e Any composite number less than p? is sifted by (i.e., crossed out as a multiple
of) a prime less than p.

e When sifting by p, start marking at p?.
o If we want to sift numbers up to m, stop sifting when p* > m.

We will use the following formulas in our computation:

value atindex i : value(i) =3 +2i=2i+3
v—3

index of value v : index(v) = 3
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step between multiple k and multiple k + 1 of value at i:

step(i) = index((k + 2)(2i + 3)) — index(k(2i + 3))
= index(2ki + 3n + 4i + 6) — index(2ki + 3n)
(2ki+3k+4i+6)—3  (2ki+3k) —3

2 2

4i+4+ 6

—HTO _sivs

index of square of value at i:
2i+3)2-3
index(value(i)?) = %

4P +12i4+9-3

B 2

=2i" +6i+3

We can now make our first attempt at implementing the sieve:

template <RandomAccessIterator I, Integer N>
void sifto(I first, N n) {
std::fill(first, first + n, true);
N i(0);
N index_square(3);
while (index_square < n) {
// dnvariant: index_square = 2i72 + 67 + 3
if (first[i]) { // if candidate is prime
mark_sieve(first + index_square,
first + n, // last
i+ 1+ 3); // factor
}
++1

index_square = 2*ix(i + 3) + 3;

It might seem that we should pass in a reference to a data structure containing
the Boolean sequence, since the sieve works only if we sift the whole thing. But

25

by instead passing an iterator to the beginning of the range, together with its
length, we don’t constrain which kind of data structure to use. The data could be
in an STL container or in a block of memory; we don’t need to know. Note that

we use the size of the table n rather than the maximum value to sift m.
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The variable index_square is the index of the first value we want to mark—
that is, the square of the current factor. One thing we notice is that we’re
computing the factor we use to mark the sieve (i + i + 3) and other quanti-
ties (shown in slanted text) every time through the loop. We can hoist common
subexpressions out of the loop; the changes are shown in bold:

template <RandomAccessIterator I, Integer N>
void siftli(I first, N n) {
I last = first + nj
std::fill(first, last, true);
N i(0);
N dindex_square(3);
N factor(3)3
while (index_square < n) {
// dnvariant: index_square = 2i722 + 61 + 3,
// factor = 29 + 3
if (first[i]) {
mark_sieve(first + index_square, last, factor);
}
++13
factor = i + i + 33
index_square = 2xi*(i + 3) + 3;

The astute reader will notice that the factor computation is actually slightly
worse than before, since it happens every time through the loop, not just on
iterations when the 1 f test is true. However, we shall see later why making fac-
tor a separate variable makes sense. A bigger issue is that we still have a rela-
tively expensive operation—the computation of index_square, which involves
two multiplications. So we will take a cue from compiler optimization and use
a technique known as strength reduction, which was designed to replace more
expensive operations like multiplication with equivalent code that uses less ex-
pensive operations like addition.? If a compiler can do this automatically, we
can certainly do it manually.

Let’s look at these computations in more detail. Suppose we replaced

factor = i + i + 33
index_square = 3 + 2xi*x(i + 3);

with

factor += Ofcror;

2While multiplication is not necessarily slower than addition on modern processors, the general
technique can still lead to using fewer operations.
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index_square += 6mdmjmmﬁ;

where §acior and Gindex_square are the differences between successive (ith and i+1st)
values of factor and index_square, respectively:

6factor : (2(1+ l) + 3) - (21+ 3) =2

Sindex_square * (2(i+ 1) +6(i + 1) + 3) — (2i* + 6i + 3)
=2 +4i+2+6i+6+3-2i*—6i—3
=4i+8=(2i+3)+ (2i+2+3)
=(2i+3)+(2(i+1)+3)
= factor(i) + factor(i + 1)

Ofactor 18 €asy; the variables cancel and we get the constant 2. But how did we sim-
plify the expression for djugex square? We observe that by rearranging the terms,
we can express it using something we already have, factor (i), and something
we need to compute anyway, factor(i + 1). (When you know you need to
compute multiple quantities, it's useful to see if one can be computed in terms
of another. This might allow you to do less work.)

With these substitutions, we get our final version of sift; again, our im-
provements are shown in bold:

template <RandomAccessIterator I, Integer N>
void sift(I first, N n) {
I last = first + n;
std::fill(first, last, true);
N i(0);
N index_square(3);
N factor(3);
while (index_square < n) {
// dinvariant: index_square = 2i72 + 61 + 3,
// factor = 21 + 3
if (first[i]) {
mark_sieve(first + index_square, last, factor);
}
++7;
index_square += factor}
factor += N(2)3
index_square += factor;
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Exercise 3.2. Time the sieve using different data sizes: bit (using
std::vector<bool>), uint8_t, uintlé_t, uint32_t, uint64_t

Exercise 3.3. Using the sieve, graph the function
7(n) = number of primes < n

for n up to 107 and find its analytic approximation.

We call primes that read the same backward and forward palindromic primes.
Here we've highlighted the ones up to 1000:

1317 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79
83 89 97 103 107 109 113 127 137 139 149 157 163

167 173 179[181][191]193 197 199 211 223 227 229 233 239 241 251
257 263 269 271 277 281 283 293 307 311 317 331 337 347 349
359 367 379 389 397 401 409 419 421 431 433 439
443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547
557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643
647 653 659 661 673 677 683 691 701 709 719 733 739 743 751
761769 773 797 809 811 821 823 827 829 839 853 857 859
863 877 881 883 887 907 911 937 941 947 953 967 971 977
983 991 997

Interestingly, there are no palindromic primes between 1000 and 2000:

1009101310191021 103110331039 10491051 1061 1063 1069 1087
1091109310971103110911171123112911511153116311711181
11871193120112131217 1223 122912311237 1249 12591277 1279
1283 128912911297 130113031307 131913211327 13611367 1373
13811399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471
148114831487 148914931499 1511 15231531 1543 15491553 1559
1567 157115791583 15971601 1607 1609 1613 1619 1621 1627 1637
16571663 1667 1669 1693 1697 1699 17091721 1723 1733 1741 1747
175317591777 17831787 17891801 1811 1823 1831 1847 1861 1867
187118731877 187918891901 1907 191319311933 194919511973
1979 1987 1993 1997 1999

Exercise 3.4. Are there palindromic primes > 1000? What is the reason for the
lack of them in the interval [1000, 2000]? What happens if we change our base
to 162 To an arbitrary n?

3.4 Perfect Numbers

As we saw in Section 3.1, the ancient Greeks were interested in all sorts of prop-
erties of numbers. One idea they came up with was that of a perfect number—
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a number that is the sum of its proper divisors.> They knew of four perfect
numbers:

6=1+2+3
28=1+2+4+7+14
496 =1+24+4+8+16+31+62+ 1244248
8128 =1+2+4+48+4+16+32+ 64+ 127 4254 4508 4 1016 + 2032 +- 4064

Perfect numbers were believed to be related to nature and the structure of the
universe. For example, the number 28 was the number of days in the lunar cycle.

What the Greeks really wanted to know was whether there was a way to pre-
dict other perfect numbers. Theylooked at the prime factorizations of the perfect
numbers they knew:

6=2-3=21.3
28=4.7=2%.7
496 =16 -31 =2*.31
8128 = 64 - 127 = 2°.127

and noticed the following pattern:

6=2-3=2"(2?
28=4.7=2%.(2°
120=8-15=2°.(2* not perfect
496 = 16 -31 = 2* . (2°
2016 = 32-63 =2° - (2°
(

8128 =64 -127 = 2°. (27

not perfect

The result of this expression is perfect when the the second term is prime. It was
Euclid who presented the proof of this fact around 300 BC.

Theorem 3.3 (Euclid IX, 36):

n n
If Z 2" is prime then 2" Z 2" is perfect.

i=0 i=0

3 A proper divisor of a number # is a divisor of n other than # itself.
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Useful Formulas

Before we look at the proof, it is useful to remember a couple of algebraic
formulas. The first is the difference of powers:

=y =(x—y)(x+y)
2=y = (=) +xy+y)

=yt = (=) + 27y 4+ 4y) (B
This result can easily be derived using these two equations:

n—1_2

(4 T ) =T Ly LT (3.2)
n—1_2

y(xn_’_xnfly_’_.“_*_xyn—l+yn): xny+x y _’_.___’_xyn_’_ynJrl (33)

The left and right sides of 3.2 and 3.3 are equal by the distributive law. If
we then subtract 3.3 from 3.2, we get 3.1.
The second useful formula is for the sum of odd powers:

2Pl = (x4 ) (20— 2y gl g2 (3.4)

which we can derive by converting the sum to a difference and relying on
our previous result:

x2n+1 +y2n+1 — x2n+1 _ _y2n+1
_ x2n+1 _ (_y)2n+1
=(x = (E"+ =)+ ())
_ (x+y)(x2n _ x2n—1y+ L xy2n—1 +y2n)

We can get away with this because —1 to an odd power is still —1. We will
rely heavily on both of these formulas in the proofs ahead.

Now we know that for n > 0
n—1 )
d =21 (3.5)
i=0

by the difference of powers formula:
2" —1=2-1)Q" 42" 2 4 241)

(or just think of the binary number you get when you add powers of 2).
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Exercise 3.5. Using Equation 3.1, prove that if 2" — 1 is prime, then 7 is prime.

We are going to prove Euclid’s theorem the way the great German mathe-
matician Carl Gauss did. (We'll learn more about Gauss in Chapter 8.) First,
we will use Equation 3.5, substituting 2" — 1 for both occurrences of 37— 2/ in
Euclid’s theorem, to restate the theorem like this:

If2" — 1 is prime, then 2"~1(2" — 1) is perfect.

Next, we define o(n) to be the sum of the divisors of n. If the prime factorization
of nis

n= P p
then the set of all divisors consists of every possible combination of the prime di-

visors raised to every possible power up to a;. For example, 24 = 23 - 3!, so the
divisors are {2° -3, 21.30 22.30 20.31 21.31 22.31 23.31} Theirsum is

20.304.21.304 22,301 20,31 1 o131 4 92,31 4 23,31 — (20421 1 224.23)(3%+31)

That is, we can write the sum of the divisors for any number 7 as a product of
sums:

o(n) = [[Q+pi+pi+-+pf)

pi—1

[T pitpi+- 4+ )

L P
(pi = V(L +pi+pf -+ pf")
i=1 pi—1

e o6

where the last line relies on using the difference of powers formula to simplify
the numerator. (In this example, and for the rest of the book, when we use p as an
integer variable in our proofs, we assume it’s a prime, unless we say otherwise.)

Exercise 3.6. Prove thatif n and m are coprime (have no common prime factors),
then
o(nm) = o(n)o(m)

(Another way to say this is that o is a multiplicative function.)

We now define «(n), the aliquot sum, as follows:

a(n)=oc(n)—n
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In other words, the aliquot sum is the sum of all proper divisors of n—all the
divisors except n itself.
Now we're ready for the proof of Theorem 3.3, also known as Euclid IX, 36:

If2" — 1 is prime, then 2"~1 (2" — 1) is perfect.

Proof. Letg = 2"71(2" —1). We know 2 is prime, and the theorem’s condition is
that 2" — 1 is prime, so 2"~1(2" — 1) is already a prime factorization of the form
n=pypy:...por,wherem =2,py =2,ay =n—1,p, =2"—1,and a, = 1.
Using the sum of divisors formula (Equation 3.6):

2(n—1)+1 -1 (211 _ 1)2 |
olq) = 1 1)1

. r—12 -1 (2"—1)+1
=2 _U'@n—n—l'@n—n+1
:(y_ly(Q“—U@”—D—Jﬂ@”—D+1)

(@' =DE"-1)-1)
=Q2"-1)(2"-1)+1)
=2"2"—-1)=2-2""1(2"-1)=2gq

Then
alg)=o(q) —9=29-q9=¢q
That is, q is perfect. O

We can think of Euclid’s theorem as saying that if a number has a certain
form, then it is perfect. An interesting question is whether the converse is true:
if a number is perfect, does it have the form 2"~1(2" — 1)? In the 18th century,
Euler proved that if a perfect number is even, then it has this form. He was
not able to prove the more general result that every perfect number is of that
form. Even today, this is an unsolved problem; we don’t know if any odd perfect
numbers exist.

Exercise 3.7. Prove that every even perfect number is a triangular number.

Exercise 3.8. Prove that the sum of the reciprocals of the divisors of a perfect
number is always 2. Example:

111
TR S R
T2t3%s

3.5 The Pythagorean Program

For Pythagoreans, mathematics was not about abstract symbol manipulation, as
it is often viewed today. Instead, it was the science of numbers and space—the



“FMGP_Pub” — 2014/10/16 — 11:11 — page 33 — #47

The Pythagorean Program 33

two fundamental perceptible aspects of our reality. In addition to their focus on
understanding figurate numbers (such as square, oblong, and triangular num-
bers), they believed that there was discrete structure to space. Their challenge,
then, was to provide a way to ground geometry in numbers—essentially, to have
a unified theory of mathematics based on positive integers.

To do this, they came up with the idea that one line segment could be “mea-
sured” by another:

Definition 3.1. A segment V is a measure of a segment A if and only if A can be
represented as a finite concatenation of copies of V.

A measure must be small enough that an exact integral number of copies
produces the desired segment; there are no “fractional” measures. Of course,
different measures might be used for different segments. If one wanted to use
the same measure for two segments, it had to be a common measure:

Definition 3.2. A segment V is a common measure of segments A and B if and
only if it is a measure of both.

For any given situation, the Pythagoreans believed there is a common mea-
sure for all the objects of interest. Therefore, space could be represented discretely.

* * *

Since there could be many common measures, they also came up with the idea
of the greatest common measure:

Definition 3.3. A segment V is the greatest common measure of A and B if it is
greater than any other common measure of A and B.

The Pythagoreans also recognized several properties of greatest common mea-
sure (GCM), which we represent in modern notation as follows:

gcm(a,a) =a (3.7)
gem(a, b) = gem(a,a + b) (3.8)
b<a = gcm(a,b) =gcm(a—b,b) (3.9)
gcem(a, b) = gem(b, a) (3.10)

Using these properties, they came up with the most important procedure in
Greek mathematics—perhaps in all mathematics: a way to compute the great-
est common measure of two segments. The computational machinery of the
Greeks consisted of ruler and compass operations on line segments. Using C++
notation, we might write the procedure like this, using 1ine_segment as a type:
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line_segment gcm(line_segment a, line_segment b) {

if (a == b) return a;
if (b < a) return gcm(a - b, b);
/* if (a < b) */ return gcm(a, b - a);

}

This code makes use of the trichotomy law: the fact that if you have two values a
and b of the same totally ordered type, then eithera = b,a < b,ora > b.
Let’s look at an example. What’s gcm(196, 42)?

a b

196 > 42, gcm(196, 42)
154 > 42, gecm(154, 42)

gem(196 — 42, 42) gem(154, 42)
gem(154 — 42,42) = gem(112,42)

112 >42, gem(112,42) = gcm(112—42,42) = gcm(70,42)
70 > 42, gem(70,42) = gcm(70 —42,42) = gcm(28,42)
28 <42, gcm(28,42) = gcm(28,42 — 28) = gcm(28, 14)
28 > 14, gcm(28,14) = gcm(28 — 14, 14) = gcm(14, 14)

14 =14, gcm(14, 14) 14

So we're done: gem(196, 42) = 14.

Of course, when we say gcm(196, 42), we really mean GCM of segments with
length 196 and 42, but for the examples in this chapter, we'll just use the integers
as shorthand.

We're going to use versions of this algorithm for the next few chapters, so it’s
important to understand it and have a good feel for how it works. You may want
to try computing a few more examples by hand to convince yourself.

3.6 A Fatal Flaw in the Program

Greek mathematicians found that the well-ordering principle—the fact that any
set of natural numbers has a smallest element—provided a powerful proof tech-
nique. To prove that something does not exist, prove that if it did exist, a smaller
one would also exist.

Using this logic, the Pythagoreans discovered a proof that undermined their
entire program.* We're going to use a 19th-century reconstruction of this proof
by George Chrystal.

Theorem 3.4: There is no segment that can measure both the side and the diagonal
of a square.

“We don’t know if Pythagoras himself made this discovery, or one of his early followers.
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Proof. Assume the contrary, that there were a segment that could measure both
the side and the diagonal of some square.® Let us take the smallest such square
for this segment:

C D

Using a ruler and compass,® we can construct a segment AF with the same length
as AB, and then create a segment starting at F and perpendicular to AC.

B A
E

F
C D

AB=AF N AC LEF

Now we construct two more perpendicular segments, CG and EG:

5This is an example of proof by contradiction. For more about this proof technique, see Ap-
pendix B.1.

6 Although modern readers may think of a ruler as being used to measure distances, for Euclid
it was only a way to draw straight lines. For this reason, some people prefer the term straightedge to
describe Euclid’s instrument. Similarly, although a modern compass can be fixed to measure equal
distances, Euclid’s compass was used only to draw circles with a given radius; it was collapsible, so it
did not preserve distances once lifted.
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B A
E
G F
C D

ACLCG AN EGLEF
We know that ZCFE = 90° (by construction) and that ZECF = 45° (since it’s
the same as ZBCA, which is the angle formed by the diagonal of a square, and

therefore is half of 90°). We also know that the three angles of a triangle sum to
180°. Therefore

ZCEF = 180° — ZCFE — ZECF = 180° — 90° — 45° = 45°

So ZCEF = ZECF, which means CEF is an isosceles triangle, so the sides oppo-
site equal angles are equal—that is, CF = EF. Finally, we add one more segment
BF:

B A
E
G
F
C D

Eangle ABF is also isosceles, with ZABF = /AFB, since we constructed AB =
AF. And ZABC = ZAFE, since both were constructed with perpendiculars. So

/ABC — Z/ABF = /AFE — Z/AFB
/EBF = /EFB

— BE =EF
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Now, we know AC is measurable since that’s part of our premise, and we know
AF is measurable, since it’s the same as AB, which is also measurable by our
premise. So their difference CF = AC — AF is also measurable. Since we just
showed that ACEF and ABEF are both isosceles,

CF=EF = BE

we know BC is measurable, again by our premise, and we've just shown that CF,
and therefore BE, is measurable. So EC = BC — BE is measurable.

We now have a smaller square whose side (EF) and diagonal (EC) are both
measurable by our common unit. But our original square was chosen to be the
smallest for which the relationship held—a contradiction. So our original as-
sumption was wrong, and there is no segment that can measure both the side
and the diagonal of a square. If you try to find one, you'll be at it forever—our
line_segment_gcm(a, b) procedure will not terminate. O

To put it another way, the ratio of the diagonal and the side of a square cannot
be expressed as a rational number (the ratio of two integers). Today we would
say that with this proof, the Pythagoreans had discovered irrational numbers,
and specifically that v/2 is irrational.

The discovery of irrational numbers was unbelievably shocking. It under-
mined the Pythagoreans’s entire program; it meant that geometry could not be
grounded in numbers. So they did what many organizations do when faced
with bad news: they swore everyone to secrecy. When one of the order leaked
the story, legend has it that the gods punished him by sinking the ship carrying
him, drowning all on board.

Eventually, Pythagoras’ followers came up with a new strategy. If they couldn’t
unify mathematics on a foundation of numbers, they would unify it on a foun-
dation of geometry. This was the origin of the ruler-and-compass constructions
still used today to teach geometry; no numbers are used or needed.

Later mathematicians came up with an alternate, number-theoretic proof of
the irrationality of v/2. One version was included as proposition 117 in some
editions of Book X of Euclid’s Elements. While the proof predates Euclid, it was
added to Elements some time after the book’s original publication. In any case,
it is an important proof:
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Theorem 3.5: /2 is irrational.

Proof. Assume /2 is rational. Then it can be expressed as the ratio of two inte-
gers m and n, where m/n is irreducible:

m_.\a
n
2
(%) =2
n
m? = 2n?

m? is even, which means that m is also even,” so we can write it as 2 times some

number u, substitute the result into the preceding equation, and do a bit more
algebraic manipulation:

m=2u
(2u)* = 2n?
4y? = 2n?
20 = n?

n? is even, which means that # is also even. But if m and n are both even, then

m/n is not irreducible—a contradiction. So our assumption is false; there is no
way to represent /2 as the ratio of two integers. O

3.7 Thoughts on the Chapter

The ancient Greeks’ fascination with “shapes” of numbers and other properties
such as prime and perfect were the basis of the mathematical field of number
theory. Some of the algorithms they used, such as the Sieve of Eratosthenes, are
still very elegant, though we saw how to improve their efficiency further by using
some modern optimization techniques.

* * *

Toward the end of the chapter, we saw two different proofs that \/2 is irrational,
one geometric and one algebraic. The fact that we have two completely different
proofs of the same result is good. It is actually essential for mathematicians to
look for multiple proofs of the same mathematical fact, since it increases their
confidence in the result. For example, Gauss spent much of his career coming up
with multiple proofs for one important theorem, the quadratic reciprocity law.

7This is easily shown: The product of two odd numbers is an odd number, so if 1 were not even,
m? could not be even. Euclid proved this and many other results about odd and even numbers earlier
in Elements.
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The discovery of irrational numbers emerged from the Pythagoreans’ at-
tempts to represent continuous reality with discrete numbers. While at first
glance we might think they were naive to believe that they could accomplish this,
computer scientists do the same thing today—we approximate the real world
with binary numbers. In fact, the tension between continuous and discrete has
remained a central theme in mathematics through the present day, and will
probably be with us forever. But rather than being a problem, this tension has
actually been the source of great progress and revolutionary insights.



