From Mathematics to
Generic Programming

Course Slides — Part 1 of 3
Version 1.0
October 5, 2015

Copyright © 2015 by Alexander A. Stepanov and Daniel E. Rose.
‘@ @ | This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Lecture 1

Overview of the Course
(Covers material from Chapter 1)

What This Course Is About

The deep relationship between
mathematics and programming,
especially generic programming.

What Do We Mean By
Generic Programming?

Generic Programming is an
e approach to programming...

* focused on designing algorithms and
data structures so that they work
in the most general setting...

e without loss of efficiency

Wait, what?

 What about things like templates, iterator traits, and
metaprogramming?
— Constructs like templates are tools needed for today’s
languages to support generic programming
— You need to know how to use them, but they are just
means to an end
e Generic programming is more of an attitude than a
particular set of tools

Origins of
Generic Programming Approach

Abstract Algebra: Branch of mathematics
concerned with reasoning about entities in

terms of abstract properties of operations on
them

* This course will introduce you to some of the
basic ideas of abstract algebra

* Then we’ll see how to apply these ideas to
programming

What Are We Abstracting?

* When you’re trying to find the most general
way to express an algorithm, or a
mathematical idea, you need to start with a
concrete problem and concrete examples

* |[n mathematics, the concrete problems that
drove abstract algebra come from number
theory.

Number Theory

Number Theory: Branch of mathematics that
deals with properties of integers, especially
divisibility.

* |n this course, we’ll introduce some classic
problems and results in number theory.

e Later we’ll see how some of these results
apply to a modern, practical problem.

Approach

This course will weave together mathematics
and programming

* Some parts will be just about math

 Some parts will be just about programming
* Some parts will be about both

Programming Prerequisites

* You should be comfortable reading and
writing code in an imperative language like C,
C++, or Java

e Our examples use C++, but the basic ideas of
generic programming are not language-
specific

Mathematical Prerequisites

* No specific knowledge beyond high-school
algebra

But:
* You need to be able to think logically

* |t will help if you have some experience with
mathematical proofs

Course in a Nutshell

* Understanding the principles of generic programming
will make you a better programmer

* To understand the principles of generic programming,
you need to understand abstraction

* To understand abstraction, you need to understand
the mathematics on which it’s based

Textbook

* This course closely follows the book From
Mathematics to Generic Programming by
Alexander A. Stepanov and Daniel E. Rose
(Addison-Wesley, 2015).

* For more about the book, including code for
examples, see www.fm2gp.com.

Lecture 2

Egyptian Multiplication
(Covers material from Chapter 2)

Algorithms

nat is an algorithm?
nat’s the first algorithm you learned?
nat’s the first algorithm anyone learned?

S 2 ==

nere did it come from?
— Possibly ancient Egypt...

Ancient Egyptian Mathematics:
Rhind Mathematical Papyrus

* Written by the scribe Ahmes
1650BC (copy of a much older text =1850BC)

Algorithms for fast multiplication and division

What is multiplication?

Informally:
“Adding something to itself a certain number of times.”

Formally:
la=a
nm+1)a=na+a
In code:

int multiplyO(int n, int a) {
if (nh == 1) return a;
return multiplyO(n - 1, a) + a;

Is there a faster way?
Ancient Egyptians had one...

The algorithmic insight:
da=(a+a)+a)+a
=(a+a)+ (a+a)

* Relies on associativity
* Only need to compute a + a once

Example of Ahmes Algorithm: 41 x 59

Make table where each line doubles line before

1 v 59
2 118
4 236
8 vV 472
16 944
32 V/ 1888

Mark entries in first column
that sum to first factor

41=1+8+ 32

Add corresponding entries in
second column

59 + 472 + 1888
Result is desired product

i.e. 41 x59=(1x59)+(8x59)+(32x59)

Requires knowledge of even and odd

* The Egyptians must have known this
distinction, because the technique relies on it

e Here’s how the Ancient Greeks defined them:

n=-+—- — even(n)

N

n
2

n—1+n—1
2 2

Halving and Doubling
* Also need to know that:

odd(n) = half(n) =half(n-1)

* |n code:

bool odd(int n) { return n & Ox1; }
int half(int n) { return n >> 1; }

Egyptian Multiplication Algorithm

int multiplyl(int n, 1nt a) {
1f (n == 1) return a;
1nt result =
multiplylChalf(n), a + a);
1f (odd(n)) result = result + a;
return result;

...aka Russian Peasant Algorithm

* Many computer scientists know this as the
Russian Peasant Algorithm, which is what
Knuth called it.

e But original source actually says:

“I have been told that there is a method in use to-day
(some say in Russia, but I have not been able to verify this)...”

Sir Thomas Heath, History of Greek Mathematics, 1911

How many additions to multiply by 7?

4. (n) = |logn| +v(n) -1

where v(n) is the number of 1s in the binary
representation of 1 (the population count or pop count)

We have replaced an O(n) algorithm
with a O(log n) algorithm.

s it optimal?

#.(15)=3+4—-1=6

multiply_by_15

int multiply_by_15(int a) {

int b = (a + a) + a; // b == 3*a
int ¢ = b + b; // Cc == 6%*a
return (c + c) + b; // 12*a + 3*a
}
e 5 additions!

 We have discovered an optimal addition chain for 15.

 However, we’ll stick with Egyptian Multiplication for
the general case.

Can we improve the
Egyptian Multiplication code?

* Thecodeofmultiplylisagood

implementation as far as the number of
additions

* Butit also does|logn|recursive calls

— function call is much more expensive than plus

Another approach: use helper function
multiply-accumulate

r + na

a and n are the values we’re multiplying;
r is a running total.

Observation

It is often easier to do more rather than less.

Multiply-Accumulate:
First Attempt

int mult_accO(int r, int n, int a) {
1f (n == 1) return r + a;
if (odd(n))
return mult_accO(r + a, half(n), a + a);
} else {
return mult_accO(r, half(n), a + a);
}
}

Invariant: r+na=ry+ nya,

Tail Recursion

e A function is tail recursive if it calls itself in its
return statement (only).

Tail Recursive Multiply-Accumulate

int mult_accl(int r, 1nt n, 1nt a) {
if (n == 1) return r + a;
1f (odd(n)) r = r + a;
return mult_accl(r, half(n), a + a);

Observations:
* nisusually not 1.
e ifniseven,itisnot 1.

More Efficient Multiply-Accumulate

We reduce number of comparisons with 1 by a
factor of 2 by checking for oddness first:

int mult_acc2(int r, 1nt n, 1nt a) {
if (odd(n)) {
r=r + a;
if (nh == 1) return r;
}

return mult_acc2(r, half(n), a + a);

Strict Tail Recursion

* A function is strictly tail recursive if all the
tail-recursive calls are done with the formal
parameters of the procedure being the
corresponding arguments.

Strictly Tail Recursive
Multiply-Accumulate

int mult_acc3(int r, 1nt n, 1nt a) {
1f (odd(n)) {

r=r + a;
if (n == 1) return r;
}
n = half(n);
a =a + a;

return mult_acc3(r, n, a);

Iterative Multiply-Accumulate

int mult_acc4(int r, 1nt n, 1nt a) {
while (true) {
1f (odd(n)) {
r=r + a;

1if (n == 1) return r;
}
n = half(n);
a =a + a;

¥
}

Multiply Using Multiply-Accumulate

int multiply2(int n, 1nt a) {
if (n == 1) return a;:
return mult_acc4(a, n - 1, a);

Observations:
e Whennis 16, it does 7 additions instead of 4.

e We do not want to subtract 1 from an even number.
Let us make it odd!

Improve Multiply

int multiply3(int n, 1nt a) {
while (lodd(n)) {

a =a + a;
n = half(n);
}
if (nh == 1) return a;

return mult_accd4(a, n - 1, a);

Final Version of Multiply

int multiplyd(int n, 1int a) {
while (lodd(n)) {
a=a-+ a
n half(n);

}

1f (nh == 1) return a;

// even(n - 1) = n -1 1=1

return mult_acc4(a, half(n - 1), a + a);:

}

Things to Consider

* Even a simple algorithm can benefit from
rewriting.

* Even a small optimization may have a large
effect:
— It may be called billions of times

— A future use of the algorithm may replace your
inexpensive operation with a very expensive one

Lecture 3

The Sieve of Eratosthenes
(Covers material from Sec. 3.1-3.3)

Pythagoras (570BC - 490BC)

e Studied with Thales of
Miletus, the founder of
philosophy

* Traveled to Egypt to

learn mathematics, and
then to Babylon

 Founded ascetic colony
to study

42

Pythagorean Studies

* “Quadrivium” — original basis of European
education:

— Astronomy

— Geometry

— Number Theory
— Music

Integration of Pythagorean Studies

e Each field related to the others

— E.g. numerical relationships between frequencies
In Music

e Pythagoras could “hear the music of the
celestial spheres”

Pythagorean Mathematics

Pythagoreans applied themselves to the study of
mathematics. They thought that its principles
must be the principles of all existing things.

Aristotle, Metaphysics

Triangular Numbers: A,

a

a ad

a aa aaa

a ad aaa aaaa

a aa aaa aaaa aaaaa
ad aaa aaaa aaaaa aaaaaa

3 6 10 15 21

Oblong Numbers:

aaa
aa aaa
aa aaa
aa aaa

6 12

nth oblong number is area of the rectangle:

n:n(n_I_l)

aaaa
aaaa
aoaa
aaaa
aaaa

20

aaaaa
aaaaa
aoaaa
aoaaaa
aaaaa
aaaaa

30

aoaaaa
aaaaaa
aodaoaaa
aaaaaa
aoqaaaa
agaaaa
aaaaaa

42

47

Relationship of Triangular and Oblong

aoaaaa

aaaaa aaaaaa

aaaa aaaaa aodaoaaa

aaa aaaa aoaaa aaaaaa

aa aaa aoaa aoaaaa aaaaaa
a aa aaa aaaa aaaaa agaaaa
a ad aaa aaaa aaaaa aaaaaa
2 6 12 20 30 42

Triangle is half the rectangle, so sum of first n pos. integers is:

A=Y i=Er ot])
=1

2 2

48

Gnomons

aaaoaa

aaaa a

aaa a a

aa a a a

a a a a
3 5 7 S

The nth gnomon is the nth odd number.

11

49

Combining gnomons gives us
square numbers

aaaaa aoaad
aaaa aaaaa aoaad
aad aaaa aaaaa aoaaa

aa aoa aaaa aaaaa aoaad
a aa aoa aaaa aaaoao aooad
1 4 S 16 25 36

And a formula for the sum of the first n positive odd integers:
n

a= (2i—1) =n?
=1

50

Prime Numbers

Numbers that are not products of smaller
numbers.

2,3,5,7,11,13,17..

Euclid VII, 32

Any number is either prime or divisible by some
prime.

If not, “an infinite sequence of numbers will
divide the number, each of which is less than
the other; and this is impossible.”

Euclid IX, 20:

For any sequence of primes \p,, ..., P,,}
there is a prime p not in the sequence.

Proof: Consider the number g =1 + HPi
i=1

By construction, g is not divisible by any p..

Either g is prime
in which case it is a prime not in the sequence

or g is divisible by some new prime,
which is by definition not in the sequence.

Therefore, there are infinitely many primes.

Eratosthenes (284BC — 195BC)

* Bornin Cyrene, Libya

e Studied in Athens
(possibly with Zeno)

 Tutored Ptolemy
Euergetes (king of Egypt)

 Measured circumference
of the Earth (within 2%!)

e A friend of Archimedes

54

Sieve of Eratosthenes

 Method for finding primes
* General Idea:

— List all the integers starting with the first prime
— Cross out multiples (they “fall through” the sieve”)
— Whatever is left is prime

e But don’t waste time on even numbers
(so actually start with 3)

Sieve of Eratosthenes Example

Find primes up to maximum m =53

Start with all the candidates:

3 5 7 9 11 13 15 17 19 21 23 25
29 31 33 35 37 39 41 43 45 47 49 51

27
53

29

Sieve of Eratosthenes Example

31

11
37

13

17
43

19

23
49

Sieve of Eratosthenes Example

11
37

13 15 17

39 41

43

19

21 23
47 49

51

53

Sieve of Eratosthenes Example

g9 11

13 15
39 41

17 19 24
43 45 47

23

Sieve of Eratosthenes Example

Since we’ve crossed out all multiples up to| \/m |
we’re done — remaining numbers are prime.

3 5 7 9 11 13 18 17 19 21 23 25 27
29 31 33 35 37 39 41 43 45 47 49 51 53

A look back at the process

Let’s keep an index array alongside the values:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17...
values: 3 (5) 7 ¢ 11 13 15 17 19 20 23 [25] 27 29 31 33 [35] 37..

Observations:

 When crossing out multiples of n, “step size” is n

e Difference between two values is twice the
difference between two indices

 First number crossed out for a factor 7 is n?

Implementation Data Structure

* Naive approach: store array of values and array
of flags indicating whether corresponding value

IS prime.
e But values can be trivially computed from
index: ith value is 3 + 2i.

* So, we only need the array of flags.

Digression: Concepts and Templates

* Concepts are requirements on types.

 We use them instead of typename to say what
types our template arguments should be:

template <Iterator I>

* Since C++ doesn’t know about concepts (yet),
we’ll fake it:

#define Iterator typename

End of Digression

Marking all multiples of a given factor

template <RandomAccessIterator I, Integer N>
void mark_sieve(I first, I last, N factor)
{
// assert(first != last)
*first = false;
while (last - first > factor) {
first = first + factor;
*first = false;

Sifting Lemmas

The square of the smallest prime factor of a
composite number c is less or equal than c.

Any composite number less than p? is sifted by
(i.e. crossed out as a multiple of) a prime less
than p.

When sifting by p, start marking at p°.

If we want to sift numbers up to m, stop
sifting when p? > m.

index:
values:

Sifting Formulas (1)

value atindexi: value(i) =3 +2i =2i+ 3

v—3
2

index of value v : index(v) =

3 4 5 6 7 8 9 10 11 12 13 14 15
9 11 13 ¥ 17 19 20 23 25| 27 29 31 33

2
7

0 1
3 9

16

17...
37...

Sifting Formulas (2)

step between multiple k and multiple k 4 2 of value at i:

step(i) = index((k + 2)(2i + 3)) — index(k(2i + 3))
= index(2ki + 3k + 4i 4+ 6) — index(2ki 4 3k)
(2ki +3k+4i+6)—3 (2ki+3k) — 3

2 2
4
_ l+6:2i+3

index:

0 1
values: 3 @

2
7

3
g 11 13 15 17 19 24 23 25| 27 29 31 33 |35 37..

1 5 6 7 8 9 10 11 12 13 14 15 16 17...

index:
values:

Sifting Formulas (3)

index of square of value at i

0o 1 2 3
3 (5) 7 ¢

index(value(i)?)
7 8 10
17 19 23

15

_ (2i+3)*-3
B 2

47 +12i49-3
a 2

=2i* +6i+3

11 12 13 14
25] 27 29 31

33

16

17...
37...

First Attempt at Sieve

template <RandomAccessIterator I, Integer N>
void siftO(I first, N n) {
std::fil11(first, first + n, true);
N 1(0);
N index_square(3);
while (index_square < n) {
// invariant: index_square = 2i*2 + 6i + 3
if (First[i]) {
// if current candidate is prime
mark_sieve(first + index_square,
first + n, //last
7 + 1 + 3); //factor
} .
++1;
index_square = 2#7%(7 + 3) + 3;

} 69

Hoist Common Subexpressions

template <RandomAccessIterator I, Integer N>
void siftl(I first, N n) {
I last = first + n;
std::fil11(first, last, true);
N 1(C0);
N index_square(3);
N factor(3);
while (index_square < n) {
// invariant: index_square = 2i*2 + 6i + 3, factor = 2i + 3
1if (first[i1]) {
mark_sieve(first + index_square, last, factor);
}

++1;
factor = 1 + 1
1ndex_square =

+ 3;
2*1*%(1 + 3) + 3;

Strength Reduction

Strength reduction is a compiler optimization
where expensive operations are replaced with
equivalent but less expensive operations.

Using Strength Reduction

Replace

factor =1 + 1 + 3;

index_square = 3 + 2*1*(1 + 3);
with

factor += 6factor;
index_square += 61’ndex_square;

where O¢, o aNd O; yex square are the differences

between successive values of factor and index_square.

O computations

Ofactor = (2(1+1)+3) — (2 +3) = 2

Oindex_square © (2(i+1)* +6(i + 1) +3) — (2i° + 6i + 3)
= 2" +4i4+2+6i+6+3—-2"—6i—3
—4i4+8=2i+3)+ (2 +2+3)
= (2i—|—3)—|—(2(i—|—1)+3)
= factor(i) + factor(i + 1)

Final Version

template <RandomAccessIterator I, Integer N>
void sift(I first, N n) {
I last = first + n;
std::fil11(first, last, true);
N 1C0);
N index_square(3);
N factor(3);
while (index_square < n) {
// invariant: index_square = 2i*2 + 6i + 3, factor = 2i + 3
if (first[i]) {
mark_sieve(first + index_square, last, factor);
}

++1;
index_square += factor;

factor += N(2);
index_square += factor;

} 74

Things to Consider

* The ancient Greeks’ fascination with seemingly
superficial properties (e.g. “shapes” of numbers) led
to the discovery of important mathematical concepts
(e.g. primes) and the field of number theory

* Optimizing an algorithm is often literally a matter of
elementary algebraic manipulation

Lecture 4

The Pythagorean Program
(Covers material from Sec. 3.4-3.7)

Perfect Numbers

A number is perfect if it is the sum of its proper
divisors.

Example: 28=1+2+4+7+14

Ancient Greeks Knew of
Four Perfect Numbers

6=1+2+3
28=1+2+4+7+14
496 =14+2+4+8+16+31+ 62+ 124 4 248
8128 =1+4+2+4+4+8+ 16+ 32 + 64 + 127 + 254 4- 508 + 1016 + 2032 + 4064

Was there a predictable pattern?

* Greeks looked at the numbers’ prime
factorization:

6=2.-3=2'.3
28=4.7=2%.7
496 = 16 - 31 = 2* . 31
8128 = 64 - 127 = 2°.127

Yes. Perfect when second term prime

6=2-3=2".(22-1)

28 =4.7=2%.(2°-1)
120 = 8-15 = 2° - (2* — 1) not perfect

496 =16-31=2*-(2> - 1)
2016 = 32 - 63 = 2° - (2° — 1) not perfect

8128 = 64 - 127 =2°. (27 — 1)

Can we prove this is always true?

Yes. Euclid did it around 300 BC

Elements Book IX, Proposition 36:

If Z 2' is prime then 2" Z 2' is perfect.

1=0 1=0

Difference of Powers

¥ -y = —y)(x+y)
-y = @ -y g +y)

Ty = (- y) (" Ty ey YY)

Derivation:

Xy A 4y
xny + xn—lyZ 4ot xyn + yn—l—l

x(x" + "y "y
y(x" "y 4+ Y

Sum of Odd Powers

x2n—|—1 + yZn—H _ (x + y)(xZn . xZn—ly 4o — xyZn—l + yZn)

Derivation:
Convert sum to difference and use previous result.

xZn—|—1 £+ yZn—i—l _ 2n+1 . 2n+1

X

Yy
_ x2n—|—1 . (_y
= (x = (y) "+)+ ()
_ (X i y)(xZn . x2n—1y 4o xyZn—l 4+ yZn)

)Zn—l—l

Restating Euclid IX, 36

n—1
Zzi: (2ﬂ—1+2n—2++2+1)
1=0

—2-1)" 1 42" 2 4. 4 241)
By difference of powers formula
2-1)2" ' +2" 24 2 41)=2"—1
So we will rewrite the theorem as:
If2" — 1 is prime, then 2"~1(2" — 1) is perfect.

Sum of divisors of a number

Example: 24
* Prime factorization: 24 =23 - 31
e So set of all divisors is:
{2030 2130 2230 2330 2031 21312231 2331}
={1,2,4,8, 3,6, 12, 24}
 Sum of all divisors is:
2030 4+ 2130 4 2230 4 2330 4 2031 4 2131 4 2231 4 7331
— (20 + 21 + 22 + 23)(30 + 31)
e So we can write sum of divisors as product of sums

Define og(#): sum of divisors of n

If the prime factorization of n is
a1 .4 7.
n=p;pPy - P

Then the sum of the divisors of n is

Z . L —1 .
G(n)=H(1+Pi+iﬂ?+---+iﬂ#)ZH?_1<1+P1-+P?+---+P5)
i=1 i=1 I
:ﬁ(Pi—l)(1+pi+zﬂ?+---+v?)
i—1 pi—1
) i

Pl

-~

Aliguot Sum

 The aliguot sum of n is the sum of all the
proper divisors of n:

a(n)= on)—-n

Now we’re ready to prove Euclid’s theorem:
If 2" — 1 is prime, then 2" =1 (2" — 1) is perfect.

Euclid IX, 36:
If 2" — 1 is prime, then 2" =1 (2" — 1) is perfect.

Proof:
Let g=2"-1(2"-1)
We know 2 and (by assumption) 2" —1 are prime,
so g is a prime factorization of the form
n=pipy - Pu

where

m=2,p,=2,a,=n-1,p,=2"-1,and a,=1.
So using our o(n) formula...

Proof of Euclid IX, 36 continued

2(n—1)—|—1 1 (2n . 1)2 1

o(q) = 1 2 1) -1
_ o (2" -1 -1 (2"-1)+
B T e R T

(2" -1E@"-1) -)((2” -D+1)

A (- TS VT (Tay 'y

=2"-1)(2"-1)+1)
=2"2"—-1)=2-2""1(2"-1) =24

Then a(q) = 0(q) —q=29—-q=¢

i.e. g is the sum of its proper divisors (perfect).

Is the converse true?

e Euclid’s theorem IX,36:
“If a number has form 27-1(2"— 1), then it is perfect.”

* Converse:
“If a number is perfect, then it has form 27-1(27—1).”

— In the 18t century, Leonhard Euler proved this for
even perfect numbers.

— It has never been proved for all perfect numbers.
(We don’t even know if odd perfect numbers exist!)

The Pythagorean Program:
Unification of Mathematics

Mathematics as the science of the two
fundamental perceptible aspects of reality:
quantity (numbers) and space (geometry).

Can they be unified?

* How to ground geometry in numbers, i.e.
positive integers?

Discretizing Space with Measure

 Segment Vis a measure of segment A iff A can
be represented as a finite concatenation of
copies of V.

 Segment Vis a common measure of segments
A and B iff it is a measure of both.

 Segment Vis the greatest common measure
(GCM) of A and B if it is greater than any other
common measure of A and B.

Pythagoreans Observed

Properties of GCM
gcem(a,a) = a
gcm(a,b) = gem(a,a + b)
b<a —> gcm(a,b) =gcm(a —b,b)
gem(a, b) = gem(b, a)

Can use these properties to compute GCM...

Computing GCM

* Most important procedure from Greek mathematics.

* “Computations” are ruler and compass operations
on line segments.

Tine_segment gcm(line_segment a,
line_segment b) {
it (a == b) return a;
1if (b < a) return gcm(a - b, b);
/* 1f (a < b) */ return gcm(a, b - a);
}

Example: GCM(196, 42)

a b
196 > 42, gcm(196,42) = gem(196 —42,42) = gem(154, 42)
154 > 42, gcm(154, 42) gem(154 — 42,42) = gem(112, 42)
112 > 42, gcm(112,42) gem(112 — 42, 42) gcm(70, 42)
70 > 42, gcm(70, 42) gem(70 — 42, 42) gcm(28, 42)
28 <42, gcm(28, 42) gcm(28, 42 — 28) gcm(28, 14)
28 > 14, gcm(28, 14) gem(28 — 14,14) = gem(14, 14)
14 =14, gcm(14, 14) 14

So GCM(196, 42) = 14

An Ancient Greek Proof Technique

 Well-ordering principle: the fact that any set
of natural numbers has a smallest element

e Use in proofs:

In order to prove that something does not exist,
prove that if it exists, a smaller one also exists.

The Proof That Ruined the
Pythagorean Plan (1)

There is no segment that can 3

measure both the side and
the diagonal of a square.

Proof: Assume contrary —
that there is such a segment.
Consider smallest square that

segment can measure.

Proof (2)

* Using ruler and compass,
construct segments B

AF = AB
EF 1 AC

Proof (3)

e Construct two more

perpendicular segments: B
CG L AC
EG | EF E
G

Proof (4)

e We know that
/CFE = 90°
/ECF = 45°

 And that three angles of a
triangle sum to 180, so:

/CEF = 180° — /CFE — /ECF
— 180° — 90° — 45° G
— 45°
* Which means
/CEF = /ECF
— CF =EF

Proof (5)

Add final segment BF.
Triangle ABF is isoceles, so
/ABF = /AFB
By construction
/ABC = ZAFE
So G

/ABC — ZABF = ZAFE — ZAFB
/EBF = Z/EFB

—> BE =EF

Proof (6)

AC measurable by premise
AF measurable since = AB

So difference CF = AC— AF is
measurable
Since isoceles triangles
CF = EF = BE
Since BC, CF, BE are

measurable, difference EC =
BC — BE is measurable.

But now we have smaller
square with measurable side
and diagonal — contradiction!

B

What this means

* There is no segment that can measure both the
side and the diagonal of a square.

— If you try to find one using the GCM procedure,
it will not terminate.

* The ratio of the diagonal and side of a square
cannot be expressed as a ratio of integers

— Pythagoreans discovered irrational numbers!

* Pythagorean program failed

— Geometry cannot be constructed from integers

Consequences

* Discovery was shocking

* Pythagoreans swore followers to secrecy,
but it leaked out

* Eventually, came up with a new plan:
Use geometry, not numbers, as the unifying
foundation of mathematics.

Alternate Proof of Irrationality of v2

 Assume V2 is rational. Then it can be
expressed as irreducible ratio of two integers:

ﬁ:\/i
n
2
(T) _ 9
n
m? = 2n?

Alternate Proof of Irrationality of v2
(continued)

* m?is even, SO M is even, SO we can write as 2
times some other number u:

m = 2u
(2u)? = 2n*
4u® = 2n?
2u* = n?

* 12is even, son is even. But if m and n are both
even, then m/n is not irreducible.

Contradiction! Assumption must be false; i.e. we
can’t express V2 as the ratio of two integers.

Things to Consider

* [t might seem that the ancient Greeks were
naive to try to represent continuous space
with discrete numbers

— Yet we do this every day when we use limited-
precision computer arithmetic

* The tension between discrete and continuous
has been a source of progress in mathematics

Lecture 5

Euclid’s Greatest Common Measure Algorithm
(Covers material from Sec. 4.1-4.4)

Golden Age of Athens

e After unlikely defeat of invading Persians in
479 BC, Athens became center of culture,
learning, and science for 150 years.

* Home of Plato’s Academy, essentially the
world’s first university.

Plato (429BC - 347BC)

* Follower of Socrates, who
taught that “the unexamined
life is not worth living.”

 Founded Academy in ~385 BC

* European philosophy “consists
of a series of footnotes to
Plato.”

— Alfred North Whitehead

110

Academy
“Let no one ignorant of geometry enter”

e 10 out of 15 years of study were fully dedicated
to mathematics

* Among their discoveries: Five Platonic Solids
(convex 3D shapes where each face is identical regular polygon)

VWil

Tetrahedron Cube Octahedron Dodecahedron Icosahedron

111

Alexandria

 Founded in 331BC by (and named after)
Alexander the Great

* Mouseion (“Institution of the Muses”)

— A research institute with over 1000 scholars

 Library of Alexandria (part of Mouseion)

— Goal of collecting all the world’s knowledge
— 500,000 scrolls

Euclid (flourished ca. 300BC)

* May have studied at the
Academy

e Worked at the Mouseion
e Wrote Elements

* “Noroyal road to
geometry”

113

Euclid’s Elements

A set of mathematical results and proofs woven
into a coherent story

Covers both geometry and number theory

— Book I starts with basic ruler-and-compass
constructions and builds to Pythagorean Theorem.

— Book XlIl shows how to construct the five Platonic
solids, and proves that there are no others.

No wasted operations

Basis of mathematical education for centuries

Elements, Book X, Proposition 2

If, when the less of two unequal magnitudes is
continually subtracted in turn from the greater,
that which is left never measures the one before it,
then the two magnitudes are incommensurable.

Euclid Provides the GCM Algorithm:
Elements X,3

Given two commensurable magnitudes, to find
their greatest common measure.

* Let the two given commensurable magnitudes
be AB, CD, of which AB is the less; thus it is
required to find the greatest common
measure of AB, CD.

Elements X,3 Proof (2)

* Now the magnitude AB either measures CD or
it does not.

e |Ifthen it measures it — and it measures itself
also — AB is a common measure of AB, CD.

* And it is manifest that it is also the greatest;
for a greater magnitude than the magnitude
AB will not measure AB.

Elements X,3 Proof (3)

 Next, let AB not measure CD.

* Then, if the less be continually subtracted in
turn from the greater, that which is left over
will sometime measure the one before it...

Elements X,3 Proof (4)

* |let AB, measuring ED, leave EC less than itself
* |let EC, measuring FB, leave AF less than itself
* and let AF measure CE.

A F B
C E D

119

Elements X,3 Proof (5)

* Since, then, AF measures CE, while CE

measures FB, therefore AF will also measure
FB.

 But it measures itself also; therefore AF will
also measure the whole AB.

A F B
C E D

e

120

Elements X,3 Proof (6)

e But AB measures DE; therefore AF will also
measure ED.

 But it measures CE also; therefore it also
measures the whole CD.

 Therefore AF is a common measure of AB, CD.

A F B
C E D

e

121

Euclid’s Algorithm in C++

Tine_segment gcmO(line_segment a,
Tine_segment b) {

while (a !'= b) {
1if (b < a) a=a - b;
else b =Db - a;

}

return a;

}

a and b are incommensurable iff gcm0 does not terminate.

GCM with Rearranged Operations

Tine_segment gcml(line_segment a,
Tine_segment b) {
while (a !'= b) {
while (b < a) a = a - b;
std::swap(a, b);
}

return a;

}

Observation: Inner while loop is computing remainder of
a and b.

Factoring Out Remainder

Tine_segment segment_remainder(line_segment a,
1ine_segment b)
{

while (b < a) a = a - b;

return a,

}

How do we know the loop will terminate?

Axiom of Archimedes

For any quantities @ and b, there is a natural
number n such that a < nb.

GCM Using Remainder

Tine_segment gcm(line_segment a,
Tine_segment b) {
while (a !'= b) {
a = segment_remainder(a, b);
std: :swap(a, b);
}

return a;

Recursive Remainder Lemma

If r = segment_remainder(a, 2b), then

r if r<b

segment_remainder(a, b) = { b i b
r—>b if r

Recursive Remainder Example

e Suppose we want to find remainder(n, 10).

 Lemma tells us to try remainder(n, 20).
— If the result is £ 10, we’re done.

— If it’s between 11 and 20, we subtract 10 from the
result and get the remainder that way.

e.g. want remainder(75, 10)
 compute remainder(75, 20) = 15
e original resultis15-10=5

fast_segment_remainder

T1ine_segment
fast_segment_remainder(line_segment a,
Tine_segment b) {
1if (a <= b) return a;
if (a - b <= b) return a - b;
a = fast_segment_remainder(a, b + b);
1if (a <= b) return a;
return a - b;

Tracing fast_segment_remainder

a=45b=6. F)
if (a <= return a;
a < b7 (45 < 67) No. if (a - b <= b) return a - b;
a—b < b?(39 < 67) No. a = fast_segment_remainder(a, b + b);
Recurse: if (a <= b) return a;
a=450b=12 return a - b;

a < b? (45 < 12?) No.
a—b < b? (33 < 127?) No.
Recurse:
a=45b =24
a < b? (45 < 247) No.
a—b<b? (21 <247) Yes, returna — b = 21
a< 21
a < b? (21 < 127) No.
returna — b =9
a<9
a < b? (9 <67) No.

returna —b=9—-6=3 130

GCM Using Fast Remainder

Tine_segment fast_segment_gcm(line_segment a,
line_segment b) {
while (a !'= b) {
a = fast_segment_remainder(a, b);
std::swap(a, b);
}

return a;

Don’t disturb my circles!

132

Mathematics Goes Dormant
(in the West)

Ancient mathematics peaks around 3™
century BC

Decline begins around the time of
Archimedes’ death

Romans interested in engineering, not math
1500 years of stagnation follows...

Meanwhile, in other places...

* Other great civilizations had developed their
own mathematical traditions:

* In China, 3 c. mathematician Liu Hui wrote
commentaries on Nine Chapters on the
Mathematical Art

* In India, 5t c. mathematician Aryabhata wrote
the Aryabhatiya, a foundational text
containing many important algorithms

Relationship to Modern Mathematics

 Modern mathematics (and computer science)
descends from European mathematical

tradition.

 But European mathematics was influenced by
Arab, Jewish, and Persian mathematicians,
writing in Arabic.

* These Arabic-speaking mathematicians were
themselves influenced by ideas from India.

A Brief History of Zero

* Concept of zero and positional notation dates
back at least to 1500 BC, used by Babylonian
astronomers

— But they used it with base 60

e Greek astronomers borrowed this base 60
positional notation for trigonometry

e Still, no decimal O for 1000 years — despite
widespread use of abacus.

Abacus

 Known throughout from
ancient China to Rome

* Positional decimal
representation

* Still widely used in 20t
century

137

Decimal Zero Finally Arrives

* Indian mathematicians combined “natural”
decimal integers with positional notation and
zero around 6" century AD.

* Notation spread through India to Persia from
6t to 9t century AD.

* Arab scholars adopted it and it was taught
from Bagdad to Cairo to Cordoba.

Rebirth of European Mathematics

e Publication in 1203 of Liber Abaci (“The Book
of Calculation”) by Leonardo Pisano.

* Introduces 0 and decimal positional notation
to Europeans

e Also now-standard algorithms for arithmetic

— “long” addition, subtraction, division, multiplication

Leonardo Pisano, aka Fibonacci
(1170-ca. 1240)

* Son of Bonacci, a Pisan
trader, who brought
Leonardo along when
working in Algeria.

* Learned “Hindu digits”
and other math from
the Arabs

 Wrote most important
math books in 1500
years

140

Things to Consider

* Many solutions in mathematics depend on
having the right representation

* The same is true of programming

Lecture 6

Remainder and Quotient Algorithms
(Covers material from Sec. 4.5-4.8)

Zero and Segment Length

* Once we have the idea of zero, we can
imagine a zero-length segment AA.

e Then we need to tweak our functions to
handle zero-length segments.

— Can’t allow 2" argument of remainder function to
be 0.

— Remainders shift to range [0, n—1].

Fast Segment Remainder with Zero

T1ine_segment
fast_segment_remainderl(line_segment a,
line_segment b) {
// precondition: b I=0
if (a < b) return a;
if (a - b < b) return a - b;
a = fast_segment_remainderl(a, b + b);
if (a < b) return a;
return a - b;

Eliminating the Recursion

* Every time we recurse, we double argument b.

* |nstead, let’s precompute how many times
we’ll need to double.

First repeated doubling of b
that exceeds a—b

Tine_segment largest_doubling(line_segment a,
line_segment b) {
// precondition: b =0
while (a - b >=b) b =Db + b;
return b;

Undoubling

* Even though we double b for each recursive
call, we still need the “undoubled” b in the
rest of the function call.

* Fortunately, we know how to “undouble” —
i.e. halve —a segment in our ruler-and-
compass computer.

lterative Remainder

line_segment remainder(line_segment a,

line_segment b) {
// precondition: b I= 0

1if (a < b) return a;
T1ne_segment ¢ = largest_doubling(a, b);
a=a- C;
while (c '= b) {
c = half(c);
1f (c <= a) a =a - c;
¥

return a,

Tracing Iterative Remainder

a=45,b=6
a < b? (45 < 67) No.
¢ < largest_doubling(45,6) = 24
a<—a—c=45—-24 =121
loop :
¢ # b? (24 # 6)7 Yes, keep going.

¢ < half(c) = half(24) = 12

1f (a < b) return a;
Tine_segment c =
largest_doubling(a, b);
a=a- C;
while (c != b) {
c = half(c);
if (c <= a) a=a - c;
}

return a,;

c<a?(12<21)? Yes. a<—a—c=21—-12=9

¢ # b? (12 # 6)7 Yes, keep going.

¢ < half(c) = half(12) =6

c<a?(6<9)? Yes.a<+—a—c=9—-6=3

¢ # b? (6 # 6)? No, done with loop.

returna = 3

149

What if we want quotient
instead of remainder?

integer quotient(line_segment a,
line_segment b) {
// Precondition: b > 0
1f (a < b) return integer(0);
T1ne_segment ¢ = largest_doubling(a, b);
integer n(1);
a=a- C;
while (c !'= b) {
c = half(c); n =n + n;
if (cx<=a) {a=a-c;n=n+1; }
}

return n,

} 150

Tracing quotient(45, 6)

a=45.b=6
a < b? (45 < 67) No.
¢ < largest_doubling(45,6) = 24
n<1
a<—a—c—=45-24 =21
loop :
c # b? (24 # 6)7 Yes, keep going.

1f (a < b) return integer(0);
Tine_segment c =
largest_doubling(a, b);
integer n(1);
a=a- C;
while (c !'= b) {
c = half(c); n = n + n;
if (c <= a) {
a=a-c¢C, n=n+ 1;
}

}

return n;

¢ < half(c) =half(24) =12; n<n+n=1+1=2
c<a?(12<21)? Yes. a<—a—c=21—-12=09;
n«<—n+1=2+1=3

¢ # b? (12 # 6)? Yes, keep going.

¢+ half(c) =half(12)=6; n+n+n=3+3=6
c<a?(6<9)? Yes. a<—a—c=9—6=3;
n<—n+1=6+1=7

¢ # b? (6 # 6)? No, done with loop.

return n = 7

151

Relationship of
Multiplication and Division

* This quotient algorithm is the “algorithmic
inverse” of Egyptian Multiplication

* A version appears in the Rhind Papyrus
* Greeks called it Egyptian Division

Since so much overlap between quotient and
remainder, why bother with two functions?

Combining Quotient and Remainder

std: :pair<integer, line_segment>
quotient_remainder(line_segment a,
Tine_segment b) {
// Precondition: b > 0
if (a < b) return {integer(0), a};
Tine_segment ¢ = largest_doubling(a, b);
integer n(1l);
a=a- C;
while (c != b) {
c = half(c); n = n + n;
1f (c<x<=a) {a=a-c;n=n+1; }
}
return {n, a};

} 153

The Law of Useful Return

If you’ve already done the work to get some
useful result, don’t throw it away.
Return it to the caller.

Could we do without half()?

* The half() operation is cheap on normal CPUs
— it’s just a right shift.

* But what if halving was difficult, expensive, or
unavailable?

Floyd-Knuth: No Halving

Tine_segment remainder_fibo(line_segment
11ne_segment
// Precondition: b > 0
if (a < b) return a;
line_segment c = b;
do {
Tine_segment tmp = c; c=b + c; b
} while (a >= ©);
do {
1if (a >=b) a =a - b;
Tine_segment tmp = ¢ - b; ¢ = b; b =
} while (b < ©);
return a;

tmp;

tmp;

GCM Using lterative Remainder

Tine_segment gcm_remainder(line_segment a,
T1ne_segment b) {
while (b !'= lTine_segment(0)) {
a = remainder(a, b);
std::swap(a, b);
¥

return a,

Euclidean Algorithm for Integers

integer gcd(integer a, integer b) {
while (b !'= integer(0)) {
a=ab;
std: :swap(a, b);
¥

return a;

Now we call it Greatest Common Divisor (GCD).

How do we know the algorithm works?

What does it mean for an algorithm to “work”?
* It must terminate.

* |t must compute what it’s supposed to
(in this case, GCD).

Termination

We rely on the fact that
0 < remainder(a, b) < b
So in each iteration, b gets smaller.

Since any decreasing sequence of positive
integers is finite, the algorithm must terminate.

Computing GCD (1)

* [n each iteration, algorithm computes
remainder(a, b), which by definition is:
r=a-"bg
where g is the quotient a divided by b.
* Since gcd(a, b) by definition divides a and also
divides b (and therefore bg), it must divide r.

Computing GCD (2)

* We can rewrite the remainder equation as:
a=bg+r

 Since gcd(b, r) by definition divides b (and
therefore bg) and also 7, it must divide a.

 Since pairs (a, b) and (b, r) have the same
common divisors, they have the same GCD.

Computing GCD (3)

* So we have shown that
a=bg+r = gcd(a, b)=gcd(b, r)

* At each iteration, the algorithm replaces
gcd(a, b) with ged(b,) by taking the
remainder and swapping the arguments.

Computing GCD (4)

Remainders computed Using definition of

at each iteration: remainder, rewrite as:
r1 = remainder(ay, bo) r1 = ag — boq1
r, = remainder(bg, 1) ro = by — 1142
r3 = remainder(r1,77) r3 =11 — 1203

r, = remainder(r,_»,7,_1) tn = Tn—2 — Yn—1qn

Computing GCD (5)

 We already showed that GCD stays the same
each time, i.e.

ecd(ag, by) = gcd(bo, 1) = ged(r1,12) = - - - = gecd(ry—1, 1)
* But we know that remainder(r,,, 7,) =0,
because that’s what terminates the algorithm.
 And gcd(x, 0) =x. So
ecd(ap,by) = --- = gecd(ry—1,1n) = gcd(r,,,0) = 1y,

which is the value returned by the algorithm.
So the algorithm computes GCD.

Things to Consider

* When programming, look for ways to avoid
duplicating work — and once you’ve computed
something, don’t throw it away!

—i.e. Follow the Law of Useful Return

Lecture /

First Ideas in Modern Number Theory
(Covers material from Sec. 5.1-5.3)

Deep Dive Into Mathematics

The next few lectures focus exclusively on math:
 Some important results in number theory
* Foundations of abstract algebra

Later we’ll see how these ideas apply to programming.

The Renaissance of Number Theory

* Mathematicians of the 15t-18t centuries
revived the Ancient Greek interest in primes
and perfect numbers.

e Special interest in primes of the form 2"—1,
since they could generate perfect numbers.

When is 2" -1 prime?

Greeks: trueforn=2, 3,5, 7, possibly 13
Hudalricus Regius (1536): false for n = 11
211 -1=2047 =23 x 89
Pietro Cataldi (1603): true forn=17, 19, 23, 29, 31, 37

But half of those (in red) were wrong;
Pierre de Fermat showed that:

223 -1 =8388607 =47 x 178481
237 —1=137438953471 =223 x 61631877

Mersenne’s Conjecture

In 1644, Mersenne wrote that
forn<257,2"—1is prime if and only if

n=2,3,57,13,17,19, 31, 67,127, 257

Two of these (shown in red) are wrong, and he
missed 89 and 107, but we still call primes of
this form Mersenne Primes.

Marin Mersenne (1588 — 1648)

e His letters shared scientific
results across countries

* Corresponded with friends

— like Galileo, Descartes,
Torricelli, Huygens, Pascal

* Helped Galileo get his work
published

172

How did Fermat factor 23— 17

In June 1640 Fermat wrote to Mersenne that his
factorization of 23/ - 1 depends on the following
three observations:

1. If nis notaprime, 2"-1 is not a prime.

2. Ifnisaprime, 2"- 2 is a multiple of 2n.

3. Ifnisaprime, and p is a prime divisor of
2"-1, then p - 1is a multiple of n.

Fermat’s Logic

If 23— 1 isn’t prime it must have an odd prime factor p.
By Fermat’s observation 3, p — 1 is a multiple of 37, i.e.
p=37u+1

Since p is odd, p — 1 = 37u must be even, so u must be
even. So we can write u as 2v, I.e.

p=74v+1
So the problem is reduced to trying values of v:
v=1? No, 75 is not a prime
v=27? No, 149 is prime, but is not a divisor of 237 — 1.
v=3? Yes, 223 is prime and is a divisor of 237 — 1.

Proving Fermat’s Observation 1:
If nis not a prime, 2"- 1 is not a prime

* |nstead of proving “If X then Y,”
we’ll prove “If not Y, then not X”
—the contrapositive, which is equivalent.

* |n this case:
If 2"— 1 is prime, then n is prime

If 2" -1 is prime, then n is prime

Proof: Suppose n is not prime. Then there must be
factors u and v such that

n=uv, u>1,v>1
So we can rewrite, and use difference of powers:
2" —1 =2 -1
= (24)" -1
= (2" = 1)(@)" T+ @)+ 2+ 1)
But then we’ve factored 2" — 1 into two numbers
each >1,so 2"—1 is not prime. Contradiction!

What about Fermat’s other 2
observations?

He said in a letter that he would have shared
the proof, but it would make the letter too

long.
Typical Fermat.

Pierre de Fermat (1601 — 1665)

e A true Renaissance man

 The last great amateur
mathematician

* Invented Analytic
Geometry

e Co-invented Probability
(with Pascal)

e Rarely shared his proofs

178

Fermat’s Unproved Conjecture

* Proofs have been found for all of Fermat’s
conjectures, except one:

2"+ 1 is prime <& n=2!
* Numbers of this form are called Fermat Primes.
 We can prove the first half:

2"+ 1 is prime = n=2!

2"+ 1is prime = n=2

Suppose 1 = 2. Then it must have an odd factor,
which we can write as 2g + 1, where g > 0.

Since 2g + 1> 1, we can write n as
n=m(2q+1)
Substituting and using sum of odd powers:
2" 41 =2t 4 q
— om(2q+1) 4 qm(29+1)
_ (2m>2q—|—1 1 129+1

= (2" +1)(2") - 2"+ -+ 1)
We factored 2" + 1: contradiction!

Other Primes of Form 22 + 1

Fermat conjectured that all of these are prime

Fermat said that 3, 5, 17, 257, 65537,
4294967297 and 18446744073709551617 are
primes. (Red ones are wrong.)

In 1732 Leonhard Euler showed that
23241 =4294967297 =641 x 6700417
For 5 <j< 32 they are composite.

Are there any more Fermat primes? Unknown.

Fermat’s Little Theorem

If pis prime, aP~*— 1 is divisible by p
foranyO<a<p

~ermat claimed to have proved in 1640
_eibniz claimed to have proved in 1670s

~inally, Euler published proof in 1742

Leonhard Euler (1707 — 1783)

* A math superstar,
recruited by kings

 Developed modern
analysis (calculus and
differential equations)

* Wrote first book on
popular science

* |t took 60 years to publish
all his work after his death

183

Proving Fermat’s Little Theorem:
Laying the Foundation

Euclid proposition VI, 30
Permutation of Remainders Lemma
Cancellation Law

Self-canceling Law

Wilson’s Theorem

A A

Then we’ll put all the pieces together.

Euclid VII, 30: The product of two integers
smaller than a prime p is not divisible by p.

Another way to say this is if p is prime and a and b are
smaller than p, then ab is not divisible by p.

It a number x is not divisible by a number 1, we can
write x as a multiple of y plus a remainder: x = my + r.
So we can similarly restate the proposition as:

pisprime AN 0<a,b<p = ab=mp+r NO<r<p

Euclid VII, 30 Restated:

pisprime A 0<a,b<p = ab=mp+r NO<r<p

Proof: Assume contrary, that ab is a multiple of p.

For a given 4, let b be smallest integer such that ab = mp.
Since p is prime, dividing p by b leaves a remainder v < b:

p=but+ov AN 0<ov<Db
Multiply both sides by a and substitute ab = mp:
ap = abu + av
ap — abu = av
ap — mpu = qau
aw=@—mu)p N 0<v<b

Then v is an integer smaller than b such that av is a multiple of p:
contradiction.

Permutation of Remainders Lemma

If p is prime, then forany 0 <a <p,

a-{1, ..., p—1}=

@, ...,ap-Di={qp+r, .., pap+rp-1}
where

O<r<p N i#] = Ti#i’]'

Permutation of Remainders Example

If p=7 and a =4, then the lemma says that
{4,8,12,16, 20,24} =
{0-7+4,1-74+1,1-74+5,2-74+2,2-74+6,3-7+3}
so the remainders are
{4,1,5,2,6, 3}
which is a permutation of
i1, ...,7-1}

Permutation of Remainders Proof

Suppose r;=r;and 1 <

Then we could take difference of two corresponding
elements, and the remainders r; and r; would cancel:

(qip +71j) — (qip +11) = qip — qip = (q; — q:)p

Since ith and jth elements are a1 and a7, we can write the
difference as a1 —aj. That is:

aj —ai = (q; — q;)p
a(j —1) = (q; — qi)p

But this has form ab = mp, which implies product of two
integers smaller than p is divisible by p.

Contradicts Euclid VII, 30, which we just proved.

Cancellation

* If we have two numbers x and y, and xy =1,
we say that they cancel.

* If x and y cancel, each is the multiplicative
inverse of the other.

 We're used to rational numbers canceling,
but today we’ll look at integer cancellation.

Modular Arithmetic

Analogy: 12-hour clock

* |fit’s 10 o’clock, and something will take 5
nours, then it will be done at 3 o’clock.

* Inasense, 10 + 5 = 3.
* More precisely, (10 + 5) mod 12 = 3.

Modular Arithmetic with Other Bases

3x3)mod7 =
(6+4)mod7=3 B3+3+3)mod7=2

2N

3x3=9=(1x7)+2

Modular Arithmetic and Cancellation

* Consider the equation
2x4)mod7=1

* Since the product of 2 and 4 is 1, they cancel
and are each other’s inverse.

Modular Arithmetic and Negation

* A negative number x mod n is equal to the
positive number n — x.

* |t’s like turning the odometer back x positions.

Modular Multiplication Table

x 1 2 3 4 5 6
1[1]2]3]4]5]6
2 1214]6]1]3]5
303|625 [1]4
4 14|115[2]6]3
5151312 (6)4 |2
6 6|5 42 1

Example: 5x4=20=2x7+6=6mod?7.

Modular Multiplication with Inverses
2 3 4 5 6

AN U1 AW N = X

1
1|2
2 | 4
3|16
4 |1
5|3
6 | 5

> | = | U1 | D | OV | W
W O\ || Ul =] W
DN | = | O\ | = | W[WU
DN W | =~ U] O
AN W D U s

Example: 2 and 4 are inverses, because 2 x4 =1.

Formal Definition of Integer Inverses

For integern > 1 and integer u >0, vis a
multiplicative inverse modulo n if there is an
integer g such that uv =1 + gn.

In other words, u and v are inverses if their
product divided by n yields a remainder of 1.

Cancellation Law

If p is prime, thenforany O <a<p
there is a number 0 < b < p such that
ab=mp + 1
Proof:

By the Permutation of Remainders Lemma, we know
that one of the possible products in the set

a-{1, ..., p—1}

will have remainder 1.
So there must be another element b that cancels 4.

Next Lecture...

* Proving Fermat’s Little Theorem

Lecture 8

Proving Fermat’s Little Theorem
(Covers material from Sec. 5.3-5.7)

Proving Fermat’s Little Theorem

If p is prime, aP~1 — 1 is divisible by p
foranyO<a<p

Foundations:

1.

2.

3.

4. Self-canceling Law
5. Wilson’s Theorem

Cancellation Refresher

* If we have two numbers x and y, and xy =1,
we say that they cancel.

* If x and y cancel, each is the multiplicative
inverse of the other.

* In modular arithmetic, x and i are inverses
modulo n if there is an integer g such that

xy=1+qgn

Self-Canceling Elements

* 1andp -1 are self-canceling elements

* |f you multiply each by itself, the result is
1 mod p, or equivalently, can be expressed as
mp + 1.

Self-Canceling Law

Forany 0 <a <p,
?>=mp+1 = a=1 vV a=p-1

Proof:

Suppose there were some other self-canceling a
that’s neither 1 norp—1. It mustbel <a<p-1.

Rearranged proof condition gives us a* — 1 = mp.
Factoring gives (a —1)(a + 1) = mp.

But now we have two integers < p whose product is
divisible by p. Contradicts Euclid VII, 30.

Wilson’s Theorem

If p is prime, there is an integer m such that
p-D!=mp+(p-1)

or, equivalently:

w-D!=(p-1)modyp

Proof of Wilson’s Theorem:
pprime — Im:(p—1D!=mp+ (p — 1)

By definiton: (p—1)!=1-2-3...(p—1)

By Cancellation and Self-canceling laws, each number in
above product except 1 and p — 1 is cancelled by its own
inverse, i.e. has remainder 1.

So we could collapse all cancelled terms as np + 1:

(p-DI=1-p+1)-(p—1)
=np-p—np+p-—1

= (np —n)p+(p—1)

Then m = np — n satisfies the theorem.

Proof of Fermat’s Little Theorem (1)
If p prime, a?~1 -1 is divisible by p forany 0 <a <p

e Consider the product:

* Write Wilson’s Theorem as: |

e Substitute:

p—1 p—1

H ai = a’ 1 Hz
i=1 i=1

p—1

Hz =(p—1)+mp
=1

p—1

Proof of Fermat’s Little Theorem (2)
If p prime, a?~1 -1 is divisible by p forany 0 <a <p

* The terms of the first product are {a, 24, ..., (p-1)a}
which by Permutation of Remainders is

P + 11 oo GpaP + 7y p—1
e So we can write: Hﬂl [[Gap+r)
=1

p— 1 p—1

* Expand and group p terms: Hﬂi = up + Hri

=1 =1

« Apply Wilson’s, group again: H ai =up +op+(p—1)

wherew=u+7v+ 1.

Proof of Fermat’s Little Theorem (3)

If p prime, aP~1— 1 is divisible by p forany 0 <a <p

 We know the two boxed expressions are equal, so
we put them together and rearrange:

wp — 1

(@ +a m)p — a

4t wp —1= (" +a" Tm)p

A

(" +a" " m)p — wp

* Collapse multiples of p on right:

a1 —1=mnp
* SoaP~t—1is divisible by p. QED.

Another Observation

a’~2is an inverse of a4, since
ar—2- g = gr-1

which by Fermat’s Little Theorem is mp + 1.

Converse of Fermat’s Little Theorem

If foralla, 0<a<mn
A l=1+gn
then n is prime.

Coprimes

Two numbers m and n are coprime if
gcd(m, n) =1

Equivalently, m and n are coprime if they have
no common factor greater than 1.

Non-Invertibility Lemma

Ifn=wuv A wu,v>1, then u is notinvertible modulo n.

Proof: Let n = uv and w be an inverse of . Then
WNn = WUv
= (mn+1)v
— mon + v
wn — mon = v
If we define z = (w — mv), then
(w-—mon=zn=ov

Since n > v, then zn > v, which is a contradiction with
zn = v. So u cannot have an inverse.

Converse of Fermat’s Little Theorem
If foralla,0 <a<mn,a™'=1+qg.n, then nis prime.

Proof: Suppose n is not prime, i.e. n = uv.

Then by Non-Invertibility lemma, 1 is not invertible.

But by condition of the theorem,
ult=u=2y=1+gn

In other words, 1 has an inverse 12, which is a
contradiction.

So n must be prime.

Generalizing Fermat’s Little Theorem

e Fermat’s Little Theorem is a result about
primes.

e Euler wondered if there is a similar result for
composite numbers.

Reminder:
Modular Multiplication for Prime

Modular Multiplication for Composite

Example: 7x9=63 =3 mod 10

Modular Multiplication:
Prime vs. Composite

Prime

All rows are permutations.
Every element has inverse.
All elements are > 0.

Composite

* Rows are not permutations.

* Only some elements have
inverse.

e Some elements are 0.

Huh?
How can the product of two
nonzero things be 07

A Subset of Composite
Modular Multiplication Table

How Many Coprimes?

The totient of a positive integer 1 is the number

of positive integers less than n that are coprime
with n:

d(n)=|{0 <i<n A coprime(i,n)}

For our modulo 10 table: ¢(10) =4
(the number of shaded rows)

How Many Coprimes for a Prime?
¢(p)=p-1

In other words, all numbers less than a given
prime are coprime with it.

Euler’s Insight

The “p—1" in Fermat’s Little Theorem is just a
special case of ¢(p) for primes.

Euler’'s Theorem
coprime(a, n) <= a®"™ — 1 is divisible by n.

Proof strategy: Modify proof of Fermat’s Little Theorem.

 Replace Permutation of Remainders Lemma with
Permutation of Coprime Remainders Lemma

* Prove that every coprime remainder has a multiplicative
inverse.

e Use the product of all coprime remainders where the
proof of Little Fermat has the product of all nonzero
remainders.

Computing qb(n) for any integer

 We can express any integer as the product of
powers of primes, so first we’ll see how to
compute the totient of a power of a prime p.

* How many coprimes of p™? At most p™-1.

* But need to subtract multiples of p, because
we know those aren’t coprime.

Totient of Prime Power

o(™)=@P" -1) - Hp,2p,...,p" — p}|
=" -1)—-|{1,2,...,p" " =1}

Totie
nt of P
rod
uct of Prime P
owers:
. dlp'q°)

Let n = p*g°®
o= (2
0-(-)-(-9
AP 7 +(z:l_q_1)

Special Case: Product of Two Primes

¢(p1p2) = P(p1) ¢(py)

* Example: Since 10=5x2
(10) = $(5) (2) = 4

General Case: Product of m Prime Powers

m
Let 1 = pri
i=1

Wilson’s Theorem
with Modular Arithmetic

* Wilson’s theorem says for a prime p, there is an m such that

p-D=@p-1)+mp

or equivalently

w-1D!=(@-1)modp

* Supposep =7 and p-1=6. So let’s expand 6!:
6! =1 x2x3x4x5x%x6
=1x(2x4)x(3x5)x6
=(1x1x1x6)mod?7
— 6mod 7

which is what Wilson’s theorem predicts.

Fermat’s Little Theorem
with Modular Arithmetic

Restate “If p is prime, a?~! — 1is divisible by p for any 0 <a < p” as
“If piis prime, a’'=1mod p forany 0 <a <p.”
We'lltryp =7 and a = 2:

20 =(2x2%x2x2x2x2)
206l =(2x2x2x2x2x2)x (1 x2x3x4x5x6)
2x1)x(2x2)x(2%x3)x(2x4)x(2x5)x(2x6)
=2x4x6x1x3x5)mod7
=(1x2x3x4x5x6)mod?7
— 6! mod 7

20 — 1mod?7

It works!

Things to Consider

Euler saw how to take a result for a specific
smaller set (primes) and generalize it to work
for a larger set (all positive integers)

This idea of relaxing requirements is at the
heart of generic programming

